

Membranspeicher

RD 50150

Ausgabe: 2018-07 Ersetzt: 01.2013

Typ HAD

CE

Nennvolumen 0,075 ... 3,5 Liter Maximaler Betriebsdruck 350 bar

Geräteserie 1X und 2X

EHC

Merkmale

- ► Hydropneumatische Speicher zum Einsatz in mobilen Arbeitsmaschinen und stationären Maschinen und Anlagen
- ► Verwendung:
 - Energiespeicherung bei Anlagen mit intermittierendem Betrieb
 - Energiereserve für Notfälle
 - Stoß- und Schwingungsdämpfung
 - Volumenausgleich bei Druck- und Temperaturänderungen
- ► Zulassung:
 - nach DGRL 2014/68/EU
 - nach TR CU 032/2013

Inhalt

Merkmale	-
Bestellangaben	2, 3
Funktion, Schnitt	4
Technische Daten	į
Anwendung, Wirkungsweise	(
Berechnung	6, 7
Kennlinien	8, 9
Abmessungen	10 13
Zubehör	14 17
Wichtige Hinweise, Sicherheitseinrichtungen	18
Inbetriebnahme, Weitere Informationen	19

Bestellangaben

01		02		03		04		05	06	07		08	09		10	11	12		13		14	
НА	D		- [T -		1				_				1	1	1	_		Τ-		
01	Mer	mbransı	peiche	er																		HAD
Nenn	volui	men																				
02								0,075	0,16	0,	35	0,5	0,6	0,7		1,0	1,4	2,	0	2,8	3,5	
N4:		r Betrie														-						
03	70 k		ebsarı	иск																0		70
03		bar bar												T 0								100
		bar bar												1 0			0		<u>' </u>			140
		bar) bar								Τ,	<u> </u>	0										160
		bar bar									,			Ιο	Т							180
		bar bar														0						200
	-	bar bar												0								210
		bar bar						•	•			•		•		•	•	Τ.	,	•	•	250
) bar											•									330
	350) bar												0			0			0	0	350
	teser								I					1	_							1
04		äteserie r bei die				non-				16	60			100		200	140	10	00	70		
	1 '	ck-Kom				iieii-		250	250	2:		160	330	210		250	250	25		350	350	1X
										25	50			250	- 1							
		äteserie																				
	,	r bei die				nen-						250		350			350	35	0	250	250	2X
	Dru	ck-Kom	binati	one	n																	
Vors	oanno	druck																				
05	0 ba	ar						•	•	•	•	•	•	•		•	•	•	•	•	•	0
	1	. 250 ba	ır					0	0	()	0	0	0		0	0	C		0	0	1 250
Ansc	hluss	sgröße 1	für Dr	uck	flüssi	gkeit ¹)															
06		4x1,5						0														Z04
		8x1,5							0			0		0			0					Z06
		2x1,5												-		0	0	0	,	0		Z08
	G1/	′2						•	•		•	•	•	•		•	•	C	,	0		G04
	G3/	' 4												·				•	,	•	•	G05
Refer	stian	ngsart	(Ölanı	schli	ueefor	m) 1)																
07		schraub			ussioi	111) =7				Τ,	5	0		0								Α
O1		schraub			mit Aı	ıßen-				-	,	- 0			+				T			
		hskant	, DOING	4116 I	iiii Al	AIJCII ⁻		•	•	1	•	•	•	•		•	•	•	•	•	•	С
		schraub	zapfe	n				0	0					-								F
		schraub			33x1,	5 mit I	n-		<u> </u>													_
	nen	gewind	е											0		0	0					E
		schraub		n M	45x1,	5 mit I	n- T												, [0	0	E5
	nen	gewind	е																			

⁰

Vorzugsprogramm Lieferprogramm Auf Anfrage 1) Weitere Anschlüsse auf Anfrage

Bestellangaben

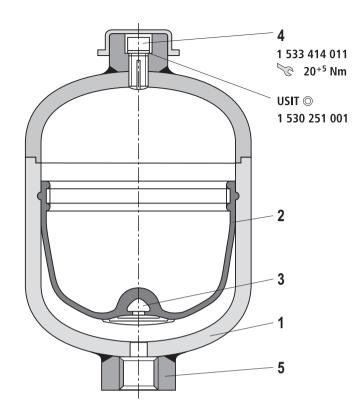
02			0,075	0,16	0,35	0,5	0,6	0,7	1,0	1,4	2,0	2,8	3,5	
Gasa	nschlussform 1)													
08	Standard		•	•	•	•	•	•	•	•	•	•	•	1
	nicht nachfüllbar, gasseitig ver- schweißt		0											4
Vlem	branwerkstoff													
09	NBR		•	•	•	•	•	•	•	•	•	•	•	N
	ECO			0	0	0		0	0	0		0	0	Е
3ehä	lterwerkstoff													
10	Stahl		•	•	•	•	•	•	•	•	•	•	•	1
	1													
Sher	fläche der Behälterinne	nseite												
	fläche der Behälterinne	nseite	•	•	•	•	•	•	•	•	•	•	•	1
11	Stahl		•	•	•	•	•	•	•	•	•	•	•	1
11 Ober	Stahl fläche der Anschlusssei										I			
11	Stahl		•	•	•	•	•	•	•	•	•	•	•	1
11 Ober	Stahl fläche der Anschlusssei										I			
11 Ober	Stahl fläche der Anschlusssei Stahl										I			
11 Ober 12 Zerti	Stahl fläche der Anschlusssei Stahl fizierung (Abnahme) 2)	te	•	•	•	•	•	•	•		I			1
11 Ober 12 Zerti	Stahl fläche der Anschlusssei Stahl fizierung (Abnahme) 2) Betriebsanleitung	te	•	•	•	•	•	•	•	•	•	•	•	1 BA

	•	
14	Weitere Angaben im Klartext, z. B.	
	Sonderausführungen	

¹⁾ Weitere Anschlüsse auf Anfrage

²⁾ Weitere Zertifizierung auf Anfrage

Funktion, Schnitt


Allgemein

Eine der Hauptaufgaben von hydropneumatischen Speichern ist es, bestimmte Volumen unter Druck stehender Flüssigkeit einer hydropneumatischen Anlage aufzunehmen und diese bei Bedarf wieder an die Anlage zurückzugeben. Da sich die Flüssigkeit unter Druck befindet, werden die hydropneumatischen Speicher wie Druckbehälter behandelt und müssen für den maximalen Betriebsüberdruck, unter Berücksichtigung der Abnahmestandards des Aufstellungslandes, ausgelegt sein.

In den meisten hydropneumatischen Anlagen werden hydropneumatische Speicher mit Trennelement eingesetzt. Nach der Ausbildung des Trennelements unterscheidet man zwischen Blasen-, Kolben- und Membranspeichern. Hydropneumatischen Speicher bestehen im wesentlichen aus einem Flüssigkeits- und einem Gasteil mit einem gasdichten Trennelement. Der Flüssigkeitsteil steht mit dem hydraulischen Kreislauf in Verbindung. Beim Ansteigen des Druckes wird das Gas komprimiert und Flüssigkeit im hydropneumatischen Speicher aufgenommen. Beim Absinken des Druckes expandiert das verdichtete Gas und verdrängt das gespeicherte Fluid in den Kreislauf.

Membranspeicher

Membranspeicher bestehen aus einem druckfesten Stahlbehälter (1), der meist kugelig bis zylindrisch ausgebildet ist. Im Innern des Speichers befindet sich als Trennglied eine Membrane (2) aus einem elastischen walkfähigen Werkstoff (Elastomer) mit dem Schließknopf (3) sowie der Verschlussschraube (4). Sie entsprechen der Druckgeräte-Richtlinie 2014/68/EU.

- 1 Behälter
- 2 Membran
- 3 Schließknopf
- **4** Verschlussschraube (Gasfüllschraube)
- **5** Flüssigkeitsanschluss

Symbol

Technische Daten

allgemein

(Bei Geräteeinsatz außerhalb der angegebenen Werte bitte anfragen!)

Masse	kg	Siehe Ta	belle Sei	te 11, 17,	18							
Bauart		Membra	nspeiche	r, geschw	eißt							
Einbaulage		Beliebig	, vorzugs	weise Flu	id-Ansch	ussstutze	en unten					
Befestigungsart		Mit Spar	nnschelle	n oder üb	er Einscl	raubstut	zen					
Umgebungstemperaturbereich	°C	-15 bis	+65									
Leitungsanschluss		Einschra	aubgewin	de								
Oberfläche				chwarz gl	änzend							
hydraulisch												
Nennvolumen	1	0,075	0,16	0,35	0,5	0,6	0,7	1,0	1,4	2,0	2,8	3,5
Effektive Gasvolumen	1	0,075	0,16	0,32	0,48	0,6	0,75	1,0	1,4	1,95	2,7	3,5
	l/min			- , .	., .			, ,				
Volumenstrom	.,	1	0			4	10			6	60	60
Maximal zulässiger	bar			Į.							70	
Betriebsdruck p							100			100		
									140			
				160	160				1			
				1		1	180					
			,					200				
				210			210					
		250	250	250	250		250	250	250	250	250	250
						330						
				-			350		350	350	350	350
Maximal zulässige Druckschwan-	bar									1 000	50	
kungsbreite Δ <i>p</i> dynamisch							50			65		
									80		l	
				90	90					l		
				00			93					
							1 30	115				
				120			93	110				
		140	140	120	90	1	140	140	140	140	140	140
		140	140	120	30	140	140	140	140	140	140	140
						140	140		140	140	140	140
Betriebsdrücke und Nutzvolumen		Sioho Pa	orochnun	g Seite 5	hic 10		140		140	140	140	140
Druckflüssigkeit		-				- Elücciak	oiton auf	Anfragal				
	. 00	Hydrauliköl nach DIN 51524; Andere Flüssigkeiten auf Anfrage!										
Druckflüssigkeitstemperaturbereich (andere auf Anfrage)	1 °C	-15 bis +80 (NBR) -35 bis +80 (ECO)										
pneumatisch												
Füllgas		Nur Stic	kstoff, mi	indestens	Reinheit	sklasse 4	.0, N2 = 9	9.99 Vol.	-%, verwe	enden!		
Gasfülldruck p0 (bei 20°C Raumtemperatur)		Siehe Vo	rzugstyp	en Seite	12 bis 18							

Verwendbare Druckflüssigkeiten:

Druckflüssigkeit	Werkstoff
Mineralöle	NBR 1)
	ECO ²⁾
HFC	NBR ¹⁾

- 1) Acrylnitril-Butadien-Rubber
- ²⁾ Epichlorhydrin-Rubber

Anwendung, Wirkungsweise

Anwendungen

Hydropneumatische Speicher bieten vielseitige Anwendungsmöglichkeiten:

- ► Energiespeicherung zur Einsparung von Pumpen-Antriebsleistung bei Anlagen mit intermittierendem Betrieb.
- ► Energiereserve für Notfälle, z. B. bei Versagen der Hydropumpe.
- ► Ausgleich von Leckverlusten.
- ► Stoß- und Schwingungsdämpfung bei periodischen Schwingungen.
- ► Volumenausgleich bei Druck- und Temperaturänderungen.
- ► Federungselement bei Fahrzeugen.
- ▶ Schockabsorbtion bei mechanischen Stößen.

Wirkungsweise

Flüssigkeiten sind nahezu inkompressibel und können deshalb keine Druckenergie speichern. In hydropneumatischen Speichern wird die Kompressibilität eines Gases zur Fluidspeicherung genutzt. Der verwendete Stickstoff muss mindestens der Reinheitsklasse 4.0 entsprechen:

N₂ 99,99 Vol.-%

Berechnung

Drücke

Bei der Berechnung eines Speichers spielen folgende Drücke eine entsprechende Rolle:

p₀ = Gas-Vorspanndruck
 Bei Raumtemperatur und entleertem
 Flüssigkeitsraum

 p_{0T} = Gas-Vorspanndruck

Bei Betriebstemperatur p_1 = minimaler Betriebsüberdruck

 p_1 = minimaler Betriebsüberdruck p_2 = maximaler Betriebsüberdruck t_{max} = maximale Betriebstemperatur

Um eine bestmögliche Ausnutzung des Speichervolumens sowie eine hohe Lebensdauer zu erreichen, wird die Einhaltung folgender Werte empfohlen:

$$p_0, t_{\text{max}} \approx 0.9 p_1$$
 (1)

Der größte hydraulische Druck soll das Vierfache des Fülldruckes nicht übersteigen, da sonst die Elastizität der Membrane zu stark beansprucht wird und zu große Kompressionsveränderung starke Gaserwärmung zur Folge hat. Die Lebensdauer der Membrane ist umso höher, je geringer die Differenz zwischen p_1 und p_2 ist. Allerdings verringert sich dadurch auch entsprechend der Ausnutzungsgrad der maximalen Speicherkapazität.

Membranspeicher

 $p_2 \le 4 \cdot p_0 \tag{2}$ Auf Anfrage $p_2 \le 8 \cdot p_0$

Hinweis:

Um erhöhte Druckverhältnisse ($p_0: p_2 > 1:4$) im Speicher zu erreichen, kann ein Füllstück auf der Gasseite des Speichers eingebracht werden.

Dadurch vermindert sich das nutzbare Gasvolumen V_1 , die Membrane wird jedoch vor unzulässiger Verformung geschützt.

Berechnung

Ölvolumen

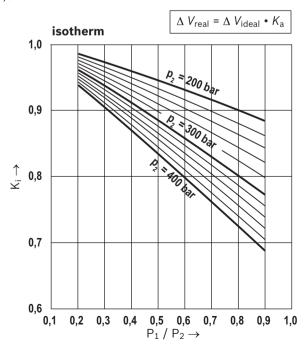
Entsprechend den Drücken $p_0 \dots p_2$ ergeben sich die Gasvolumina $V_0 \dots V_2$.

Hierbei ist V_0 gleichzeitig das Nennvolumen des Speichers. Das verfügbare Ölvolumen ΔV entspricht der Differenz der Gasvolumina V_1 und V_2 :

$$\Delta~V \leq V_1 - V_2$$

Das innerhalb einer Druckdifferenz veränderliche Gasvolumen ist bestimmt durch folgende Gleichungen:

▶ Bei isothermischer Zustandsänderung von Gasen, also dann, wenn die Veränderung des Gaspolsters so langsam erfolgt, dass genügend Zeit für den vollständigen Wärmeaustausch zwischen dem Stickstoff und seiner Umgebung zur Verfügung steht und somit die Temperatur konstant bleibt, gilt


$$p_0 \cdot V_0 = p_1 \cdot V_1 = p_2 \cdot V_2$$
 (4.1)

Berechnungsdiagramm

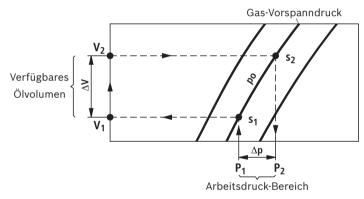
Zur grafischen Bestimmung werden die Formeln (4.1) und (4.2) in Diagramme auf Seite 9 und 10 umgesetzt. Je nach Aufgabenstellung können das verfügbare Ölvolumen, die Speicher-Größe oder die Drücke ermittelt werden.

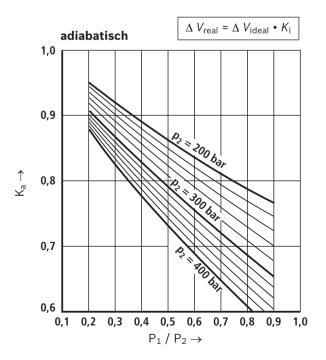
Korrekturfaktor Ki und Ka

Die Gleichung (4.1) bzw. (4.2) gilt nur für ideale Gase. Im Verhalten von realen Gasen ergeben sich jedoch bei Betriebsdrücken über 200 bar merkliche Abweichungen, die durch Korrekturfaktoren berücksichtigt werden müssen. Diese sind den folgenden Diagrammen zu entnehmen. Die Korrekturfaktoren, mit denen das ideale Entnahmevolumen ΔV zu multiplizieren sind, liegen im Bereich von 0,6 ... 1.

► Bei adiabatischer Zustandsänderung, also bei rascher Veränderung des Gaspolsters, wobei sich die Temperatur des Stickstoffes mit verändert, gilt

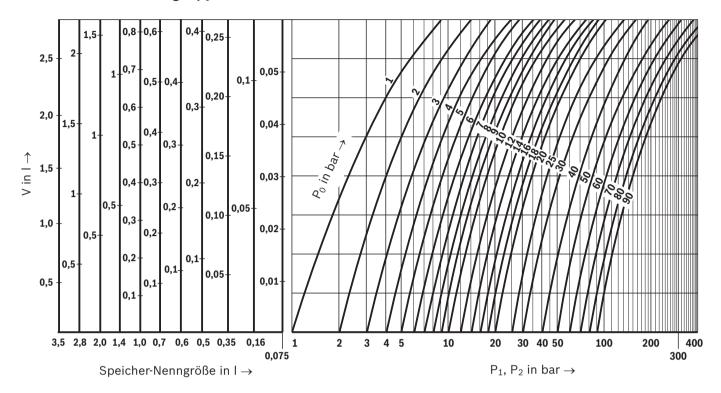
$$p_0 \cdot V \chi_0 = p_1 \cdot V \chi_1 = p_2 \cdot V \chi_2$$
 (4.2)

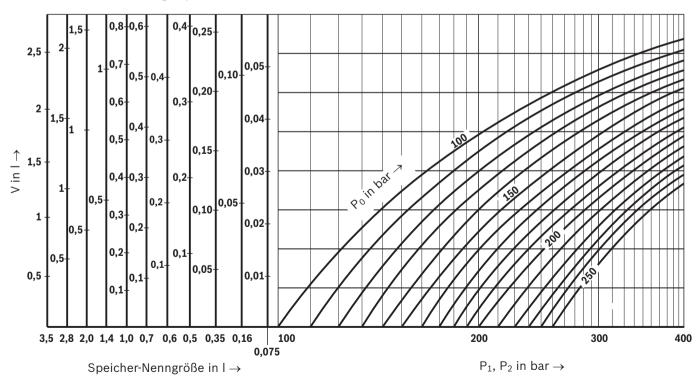

Verhältnis der spezifischen Wärmen des Gases
 (Adiabatenexponent), für Stickstoff = 1,4


In der Praxis verlaufen die Zustandsänderungen eher nach adiabatischen Gesetzen. Häufig erfolgt die Aufladung isotherm, die Entladung adiabatisch.

Unter Berücksichtigung der Gleichungen (1) und (2) liegt ΔV bei 50 % bis 70 % des Speicher-Nennvolumens. Als Anhaltspunkt gilt

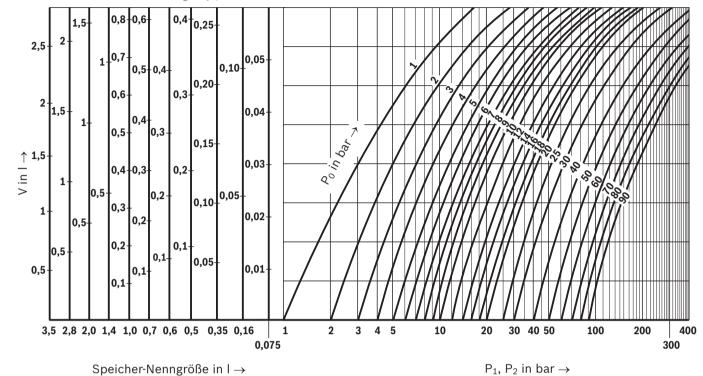
$$V_0 = 1,5 \dots 3 \times \Delta V$$
 (5)


Anwendung der Berechnungsdiagramme

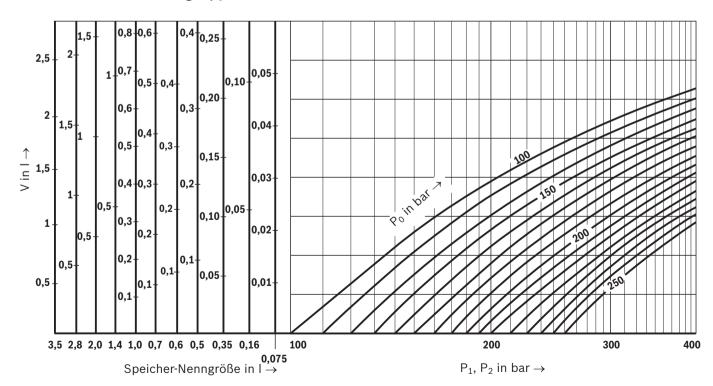


Kennlinien

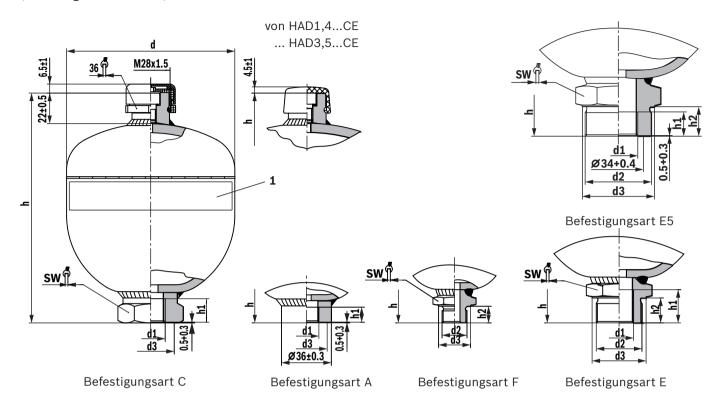
Isotherme Zustandsänderungen p_0 = 1 bis 90 bar



Isotherme Zustandsänderungen p_0 = 100 bis 250 bar

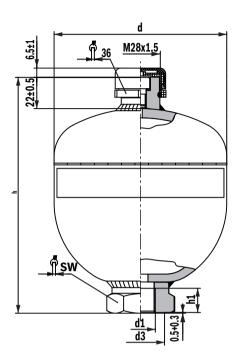


Kennlinien


Adiabatische Zustandsänderungen p_0 = 1 bis 90 bar

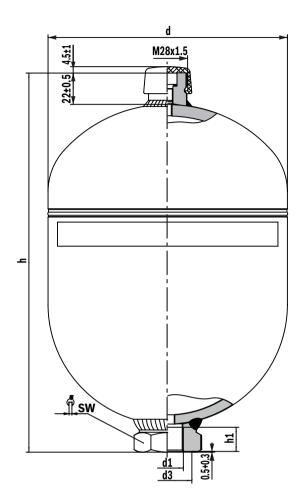
Adiabatische Zustandsänderungen p_0 = 100 bis 250 bar

Abmessungen: Gesamtübersicht (Maßangaben in mm)


1 Beschriftung

Volumen/Druck/ Serie	Anschluss- grösse	Befesti- gungsart	h	h1	h2	d	d1	d2	d3	sw	Gewicht [kg]
0.075.050.1V	G04	С	110,5±1,5	14min.	-	Ø64+0,3	G1/2	-	Ø29+0,4	32	~0,9
0,075-250-1X	Z04	F	112±1,5	-	12±0,2	Ø64+0,3	-	M14x1,5	Ø19±0,2	19	~0,7
0.16.250.17	G04	С	119±1,5	14min.	-	Ø75+0,3	G1/2	-	Ø29+0,4	32	~0,9
0,16-250-1X	Z06	F	123±1,5	-	12±0,2	Ø75+0,3	-	M18x1,5	Ø23±0,2	27	~0,9
0.2F 160.1V	Z06	А	130±1,5	14min.	-	Ø92,5+0,3	M18x1,5	-	Ø30+0,4	-	~1,3
0,35-160-1X	G04	Α	130±1,5	14min.	-	Ø92,5+0,3	G1/2	-	Ø34+0,4	-	~1,3
0.25.210.17	Z06	С	136±1,5	14min.	-	Ø92,5+0,3	M18x1,5	-	Ø30+0,4	41	~1,4
0,35-210-1X	G04	С	136±1,5	17min.	-	Ø92,5+0,3	G1/2	-	Ø34+0,4	41	~1,4
0,35-250-1X	G04	С	141±1,5	17min.	-	Ø95+0,3	G1/2	-	Ø34+0,4	41	~1,7
	Z06	С	149±1,5	14min.	-	Ø103+0,3	M18x1,5	-	Ø30+0,4	41	~1,6
0,5-160-1X	Z06	Α	143±1,5	14min.	-	Ø103+0,3	M18x1,5	-	Ø30+0,4	-	~1,5
	G04	А	143±1,5	14min.	-	Ø103+0,3	G1/2	-	Ø34+0,4	-	~1,6
0.5.050.07	Z06	С	151±1,5	14min.	-	Ø106,7+0,3	M18x1,5	-	Ø30+0,4	41	~2,1
0,5-250-2X	G04	С	151±1,5	17min.	-	Ø106,7+0,3	G1/2	-	Ø34+0,4	41	~2,1
0,6-330-1X	G04	С	170±1,5	17min.	-	Ø110+0,3	G1/2	-	Ø34+0,4	-	~2,9

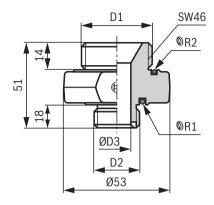
Abmessungen: Gesamtübersicht (Maßangaben in mm)


Volumen/Druck/ Serie	Anschluss- grösse	Befesti- gungsart	h	h1	h2	d	d1	d2	d3	sw	Gewicht [kg]
0.7.100.11/	G04	С	161±1,5	14min.	-	Ø117+0,3	G1/2	-	Ø34+0,4	41	~1,7
0,7-100-1X	G04	E	172±1,5	24min.	18±0,2	Ø117+0,3	G1/2	M33x1,5	Ø39±0,3	41	~2,0
	G04	С	166±1,5	17min.	-	Ø121,5+0,3	G1/2	-	Ø34+0,4	41	~2,6
	Z06	С	166±1,5	14min.	-	Ø121,5+0,3	M18x1,5	-	Ø30+0,4	41	~3,0
0,7-180-1X	Z06	А	160±1,5	14min.	-	Ø121,5+0,3	M18x1,5	-	Ø30+0,4	-	~2,6
	G04	А	160±1,5	14min.	-	Ø121,5+0,3	G1/2	-	Ø34+0,4	-	~2,6
	G04	Е	177±1,5	24min.	18±0,2	Ø121,5+0,3	G1/2	M33x1,5	Ø39±0,3	41	~2,6
0.7.040.41/	G04	С	166±1,5	14min.	-	Ø121,5+0,3	G1/2	-	Ø34+0,4	41	~2,6
0,7-210-1X	G04	Е	177±1,5	24min.	18±0,2	Ø121,5+0,3	G1/2	M33x1,5	Ø39±0,3	41	~2,7
	G04	С	169±1,5	17min.	-	Ø123,6+0,3	G1/2	-	Ø34+0,4	41	~3,2
0,7-250-1X	Z06	Α	163±1,5	14min.	-	Ø123,6+0,3	M18x1,5	-	Ø30+0,4	-	~2,9
	G04	Α	163±1,5	14min.	-	Ø123,6+0,3	G1/2	-	Ø34+0,4	-	~2,9
	G04	С	173±1,5	14min.	-	Ø128,5+0,6	G1/2	-	Ø34+0,4	41	~4,0
0,7-350-2X	G04	Е	184±1,5	24min.	18±0,2	Ø128,5+0,6	G1/2	M33x1,5	Ø39±0,3	41	~4,0
	G04	С	180±1,5	14min.	-	Ø136,2+0,3	G1/2	-	Ø34+0,4	41	~3,5
1,0-200-1X	Z08	С	180±1,5	17min.	-	Ø136,2+0,3	M22x1,5	-	Ø34+0,4	41	~3,5
	G04	Е	191±1,5	24min.	18±0,2	Ø136,2+0,3	G1/2	M33x1,5	Ø39±0,3	41	~3,6
1,0-250-1X	G04	С	181±1,5	17min.	-	Ø137+0,3	G1/2	-	Ø34+0,3	41	~3,8
	G04	С	191±1,5	14min.	-	Ø147+0,6	G1/2	-	Ø34+0,4	41	~4,3
1,4-140-1X	G04	Е	202±1,5	24min.	18±0,2	Ø147+0,6	G1/2	M33x1,5	Ø39±0,3	41	~4,2
	G04	С	195±1,5	14min.	-	Ø152+0,6	G1/2	-	Ø34+0,4	41	~5,5
1,4-250-1X	Z08	С	195±1,5	14min.	_	Ø152+0,6	M22x1,5	_	Ø34+0,4	41	~5,5
,	G04	E	206±1,5	24min.	18±0,2	Ø152+0,6	G1/2	M33x1,5	Ø39±0,3	41	~5,5
	G04	С	198±1,5	14min.	-	Ø156+0,6	G1/2	-	Ø34+0,4	41	~6,8
1,4-350-2X	G04	Е	209±1,5	24min.	18±0,2	Ø156+0,6	G1/2	M33x1,5	Ø39±0,3	41	~6,8
	G04	С	240±2	17min.	-	Ø144,7+0,5	G1/2	-	Ø34+0,4	41	~4,1
2,0-100-1X	Z08	С	240±2	14min.	_	Ø144,7+0,5	M22x1,5	_	Ø34+0,4	41	~4,1
,	G05	E5	258±1,5	16min.	20±0,2	Ø144,7+0,5	G3/4	M45x1,5	Ø49±0,3	50	~4,3
	G04	С	251±1,5	14min.	-	Ø156+0,6	G1/2	-	Ø34+0,4	41	~8,6
	Z08	С	251±1,5	14min.	_	Ø156+0,6	M22x1,5	_	Ø34+0,4	41	~8,6
2,0-250-1X	G05	С	251±0,5	16min.	_	Ø156+0,6	G3/4	_	Ø33+0,4	41	~8,6
	G05	E5	269±1,5	16min.	20±0,5	Ø156+0,6	G3/4	M45x1,5	Ø49±0,3	50	~8,9
	G05	С	251±1,5	14min.	-	Ø156+0,6	G3/4	-	Ø33+0,4	41	~9,5
2,0-350-2X	G05	E5	269±1,5	16min.	20±0,5	Ø156+0,6	G3/4	M45x1,5	Ø49±0,3	50	~8,9
	G04	С	266±2	17min.	-	Ø160+0,3	G1/2	-	Ø34+0,4	41	~10,0
2,8-70-1X	Z08	С	266±2	17min.	_	Ø160+0,3	M22x1,5	_	Ø34+0,4	41	~10,0
	Z08	С	267±1,5	17min.	-	Ø168,5±1,5	M22x1,5	-	Ø34+0,4	41	~8,0
2,8-250-2X	G05	С	267±1,5	16min.	_	Ø168,5±1,5	G1/2	_	Ø33+0,4	41	~8,3
_,	G05	E5	286±1,5	16min.	20±0,5	Ø168,5±1,5	G3/4	M45x1,5	Ø49±0,3	50	~9,0
	G05	C	264±1	16min.	-	Ø180+0,3	G3/4	-	Ø34+0,4	55	~13,1
2,8-350-1X	G05	E5	285±1	16min.	20±0,5	Ø180+0,3	G3/4	M45x1,5	Ø53-0,8	55	~13,3
	G05	C	312±1,5	16min.	-	Ø168,5±1,5	G3/4	-	Ø33+0,4	41	~9,6
3,5-250-2X	G05	E5	312±1,5 331±1,5	16min.	20±0,5	Ø168,5±1,5	G3/4 G3/4	M45x1,5	Ø49±0,3	50	~9,8
	G05	C	304±1	16min.	2010,3	Ø180+0,3	G3/4	-	Ø34+0,4	55	~16,5
3,5-350-1X	G05	E5	325±1	16min.	20±0,5	Ø180+0,3 Ø180+0,3	G3/4 G3/4	M45x1,5	Ø53-0,8	55	~16,2
	J G05	E3	3Z3±1	TOITIII.	ZU±U,5	ע+00+0,3	G3/4	INIADXT'2	<u> </u>	აა	~10,2

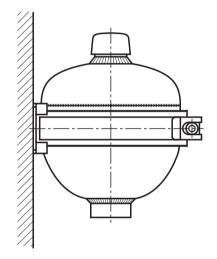
Abmessungen: Vorzugstypen: 0,075 bis 1 l (Maßangaben in mm)

Bestellangaben/Typ	Volumen/ Druck/Serie	Material- nummer	h	h1	d	d1	d3	sw	Gewicht [kg]
HAD0,075-250-1X/0G04C-1N111-BA	0,075-250-1X	R901359266	110,5±1,5	14min.	Ø64+0,3	G1/2	Ø29+0,4	32	~0,9
HAD0,16-250-1X/0G04C-1N111-BA	0,16-250-1X	R901359268	119±1,5	14min.	Ø75+0,3	G1/2	Ø29+0,4	32	~0,9
HAD0,35-250-1X/0G04C-1N111-BA	0,35-250-1X	R901461019	141±1,5	17min.	Ø95+0,3	G1/2	Ø34+0,4	41	~1,7
HAD0,5-250-2X/0G04C-1N111-BA	0,5-250-2X	R901463743	151±1,5	17min.	Ø106,7+0,3	G1/2	Ø34+0,4	41	~2,1
HAD0,6-330-1X/0G04C-1N111-BA	0,6-330-1X	R901445989	170±1,5	17min.	Ø110+0,3	G1/2	Ø34+0,4	41	~2,9
HAD0,7-250-1X/0G04C-1N111-BA	0,7-250-1X	R901463745	169±1,5	17min.	Ø123,6+0,3	G1/2	Ø34+0,4	41	~3,0
HAD1,0-250-1X/0G04C-1N111-BA	1,0-250-1X	R901461023	181±1,5	17min.	Ø137+0,3	G1/2	Ø34+0,4	41	~3,8

Abmessungen: Vorzugstypen: 1,4 bis 3,5 l (Maßangaben in mm)


Bestellangaben/Typ	Volumen/ Druck/Serie	Material- nummer	h	h1	d	d1	d3	sw	Gewicht [kg]
HAD1,4-250-1X/0G04C-1N111-CE	1,4-250-1X	R901463746	195±1,5	14min.	Ø152+0,6	G1/2	Ø34+0,4	41	~5,5
HAD2,0-250-1X/0G05C-1N111-CE	2,0-250-1X	R901463747	251±1,5	16min.	Ø156+0,6	G3/4	Ø33+0,4	41	~8,6
HAD2,8-250-2X/0G05C-1N111-CE	2,8-250-2X	R901463748	267±1,5	16min.	Ø168,5±1,5	G3/4	Ø33+0,4	41	~8,3
HAD3,5-250-2X/0G05C-1N111-CE	3,5-250-2X	R901463764	312±1,5	16min.	Ø168,5±1,5	G3/4	Ø33+0,4	41	~9,6

(Maßangaben in mm)


Speicheradapter für Speicherabsperrblöcke Typ ABZSS

Bitte wählen Sie den entsprechenden Typ nach Datenblatt 50131 aus.

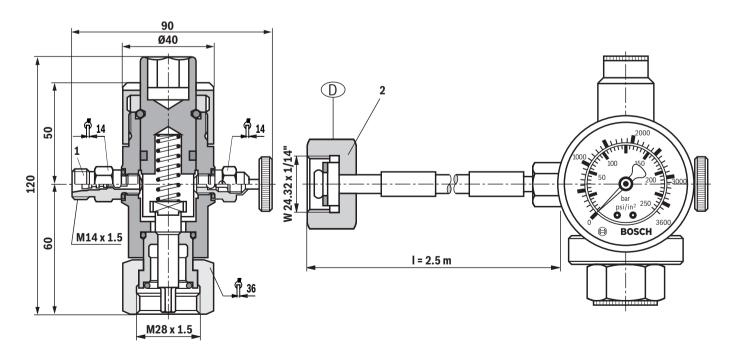
Speicher D1	Block D2	ØD3	Materialnummer
M 22 x 1,5		12	1 533 359 012
M 18 x 1,5	M 33 x 2	8	1 533 359 013
G 1/2 ISO 228		8	1 533 359 034

Befestigungsschellen, siehe Auswahltabelle

Тур	Materialnummer	Benennung						
HAD0,075-250-1X	-							
HAD0,16-250-1X	-							
HAD0,35-160-1X								
HAD0,35-210-1X	1531316017	BEFESTIGUNGSSCHELLE 92-97 MM						
HAD0,35-211-1X								
HAD0,5-160-1X	1531316018	BEFESTIGUNGSSCHELLE 101-111 MM						
HAD0,5-250-2X	1531316016	BEFESTIGUNGSSCHELLE 101-111 MIM						
HAD0,6-330-1X	1531316021	BEFESTIGUNGSSCHELLE 110-120 MM ¹⁾						
HAD0,7-100-1X	1531316021	BEFESTIGUNGSSCHELLE 110-120 MM ¹⁾						
HAD0,7-180-1X								
HAD0,7-207-1X	1501010015	DEFECTIONING CONFILE 110 120 MM						
HAD0,7-210-1X	1531316015	BEFESTIGUNGSSCHELLE 119-128 MM						
HAD0,7-250-1X								
HAD0,7-350-2X	R901073992	BEFESTIGUNGSSCHELLE 128-136 MM						
HAD1,0-200-1X	1531316019	BEFESTIGUNGSSCHELLE 135-145 MM						
HAD1,4-140-1X								
HAD1,4-207-1X	1531316016	BEFESTIGUNGSSCHELLE 145-155 MM						
HAD1,4-250-1X	1531316016	BEFESTIGUNGSSCHELLE 145-155 MIM						
HAD1,4-350-2X								
HAD2,0-100-1X								
HAD2,0-207-1X	1531316016	DEFECTIONNO CONTINUE 1 45 155 MM						
HAD2,0-250-1X	1531316016	BEFESTIGUNGSSCHELLE 145-155 MM						
HAD2,0-350-2X								
HAD2,8-70-1X	1531316022	DEEESTICHNOSSCHELLE 160 170 MANA 1)						
HAD2,8-250-2X	1531316022	BEFESTIGUNGSSCHELLE 160-170 MM ¹⁾						
HAD2,8-350-1X	1531316020	BEFESTIGUNGSSCHELLE 170-180 MM						
HAD3,5-250-2X		BEFESTIGUNGSSCHELLE 170-180 MM						
HAD3,5-350-1X	1531316020	BEFESTIGUNGSSCHELLE 1/0-180 MM						

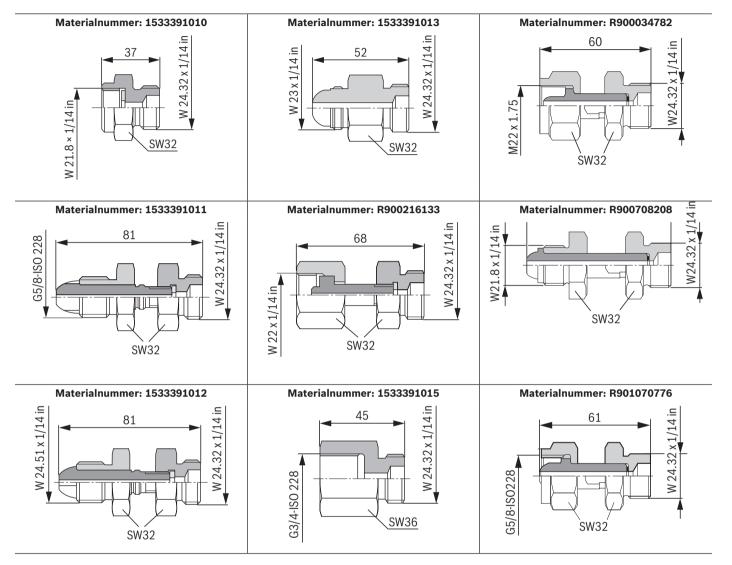
¹⁾ Für HAD und HAB verwendbar

(Maßangaben in mm)


Füll- und Prüfvorrichtung

Messkoffer	Materialnummer
► für Membranspeicher (HAD)	0538103012
► für Blasen- und Membranspeicher (HAB/ HAD)	0538103014
► Ersatzteile:	
- Koffer (ohne Inhalt)	R901079781
– Füll- und Prüfventil HAB	0538103005
– Füll- und Prüfventil HAD	0538103006
- Manometer 0 bis 250 bar	1537231001
- Schlauch I = 2,5 m mit Übergangsstutzen	1530712005

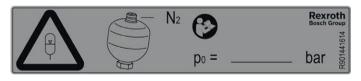
Ergänzungsteile		Materialnummer
(separate Bestellung)		
Manometer 0 25 bar		R900033955
Manometer 0 60 bar		1537231002
Manometer 0 400 bar		1537231005
Übergangsstutzen	F	1533391010
	GB	1533391011
	USA	1533391012
	KR	1533391013
	J	R900216133
	RUS	1533391015
Schlauch I = 5 m mit Übergangsstutzen	D	1530712006


Abmessungen: Füll- und Prüfventil

- 1 Ersatzteil, Materialnummer: 1537410065
- 2 Adapter, siehe Seite 16 und 17

(Maßangaben in mm)

Adapter für Stickstoffflasche zur Überwurfmutter



Adapter für Stickstoffflasche zur Überwurfmutter

Land 1)	Materialnummer								
	1533391010	1533391011	1533391012	1533391013	R900216133	1533391015	R900034782	R900708208	R901070776
Brasilien		×							
Bulgarien		x							
China									×
Frankreich	х								
Griechenland		×							
Großbritanien		×							
Indien		×							
Italien								×	
Japan					х				
Kanada			x						
Korea Nord				х					
Korea Süd				х					
Malaysia		×							
Mexiko	Х								
Rumänien	Х								
Russland						×			
Spanien		x							
Saudi Arabien	х								
Singapur		Х							
Taiwan							х		
Türkei		Х							
USA			х						

¹⁾ Andere Länder auf Anfrage

Warnschild 1) 2)

Warnschild	Materialnummer
▶ für Membranspeicher (HAD)	R901441614
Größe: 100 mm x 20 mm	
Farbe: gelb	

Das Anbringen des Warnschildes ist direkt am Speicher ab Nennvolumen 0,35 I möglich.

²⁾ Das Warnschild ist ab einer Losgröße von 100 Stück bestellbar.

Wichtige Hinweise

Bestimmungsgemäße Verwendung

Rexroth-Membranspeicher Typ HAD..-1X/2X sind zum Aufbau von hydraulischen Antriebssystemen im stationären Maschinen- und Anlagenbau vorgesehen.

In mobilen Anwendungen oder Anwendungen, bei denen auf den Membranspeicher im bestimmungsgemäßen Betrieb Beschleunigungskräfte wirken, ist eine Verwendung nur nach vorheriger Freigabe durch den zuständigen Rexroth-Produktmanager erlaubt. Bitte kontaktieren Sie den technischen Vertrieb.

Rexroth-Membranspeicher Typ HAD..-1X/2X sind nicht für den privaten Gebrauch bestimmt.

Projektierungshinweis

Membranspeicher müssen sicher und dauerhaft fest mit der Maschine oder Anlage über Befestigungselemente verbunden werden. Die Befestigung soll den Ölanschluss frei von Spannungen halten. Insbesondere sollen keine Spannungskräfte oder statischen oder dynamischen Massenkräfte über den Ölanschluss geleitet werden. Bei der Auswahl geeigneter Befestigungspunkte sind Wärmedehnung der tragenden Struktur und Vibrationen aus der Umgebung zu berücksichtigen.

Sicherheitshinweise für hydropneumatische Speicher

Der Betreiber ist verpflichtet, der Maschine oder Anlage die Betriebsanleitung RD 50150-B und für Behälter > 1 Liter die CE-Konformitätserklärung beizufügen. Allgemeine Hinweise für hydropneumatische Speicher in Hydraulikanlagen gibt die DIN EN ISO 4413. Mitgelieferte Dokumente sind sorgfältig aufzubewahren. Sie werden bei wiederkehrenden Prüfungen vom Sachverständigen benötigt

Gesetzliche Bestimmungen

Hydropneumatische Speicher sind Druckbehälter und unterliegen den am Aufstellungsort gültigen nationalen Vorschriften bzw. Verordnungen.

In Deutschland gilt die Betriebssicherheitsverordnung (BetrSichV).

In speziellen Anwendungen sind gegebenenfalls zusätzliche Regularien zu beachten, zum Beispiel im Schiffsbau, Flugzeugbau und Bergbau.

Befähigte Personen

Gemäß der Betriebssicherheitsverordnung (BetrSichV) dürfen Prüfungen nur von befähigten Personen durchgeführt werden.

Befähigt sind Personen, die durch eine Berufsausbildung, Berufserfahrung und zeitnahe berufliche Tätigkeit über die erforderlichen Fachkenntnisse verfügen.

Sicherheitseinrichtungen

Hydropneumatische Speicher sind gemäß Druckgeräte-Richtlinie 2014/68/EU gegen Betrieb außerhalb der zulässigen Grenzen abzusichern. Zur Einhaltung des maximalen Betriebsdrucks empfiehlt Bosch Rexroth die Verwendung eines Speicherabsperrblocks Typ ABZSS nach Datenblatt 50131.

Inbetriebnahme

Einbaubedingungen

Fülldruck

Membranspeicher werden im Regelfall in betriebsbereitem Zustand geliefert. Der Fülldruck (p_0) ist auf dem Speichergehäuse eingeprägt.

Füllgas

Hydropneumatische Speicher dürfen nur mit Stickstoff Klasse 4.0 reinst gefüllt werden, N2 99,99 Vol.-%.

Zulässige Betriebstemperatur

Hydropneumatische Speicher von Rexroth sind in "Standardausführung" für Betriebstemperaturen von −15 bis +80 °C geeignet.

Bei abweichenden Temperaturen bitte Rücksprache mit Bosch Rexroth halten.

Einbaulage

Die Einbaulage für Membranspeicher ist beliebig. Für das Prüf- und Füllgerät ist über dem Gasventil ein Einbauraum von 200 mm frei zu halten.

Befestigung

Der Speicher ist so zu befestigen, dass etwaige Kräfte, hervorgerufen zum Beispiel durch anwendungsbedingte Vibrationen oder Beschleunigungen, sicher aufgenommen werden können. Bei mehreren Befestigungspunkten sind Verspannungen durch betriebsbedingte, elastische Verformungen oder Temperaturdehnungen in der Struktur zu vermeiden.

Bosch Rexroth bietet entsprechende Befestigungsschellen an (siehe Seite 14).

Weitere Informationen

Betriebsanleitungen

Sprache	Betriebsanleitung
Deutsch	RD 50150-B
Englisch	RE 50150-B
Spanisch	RS 50150-B
Französisch	RF 50150-B
Italienisch	RI 50150-B
Russisch	R-RS 50150-B
Tschechisch	R-CZ 50150-B
Polnisch	R-PL 50150-B
Chinesisch	RC 50150-B
Türkisch	RT 50150-B

CE-Konformitätserklärungen

in den Sprachen Deutsch, Englisch, Französisch

Тур	Konformitätserklärung
HAD bis 1,0	-
HAD1,4-140-1X	RA50835411
HAD1,4-250-1X	RA50835430
HAD1,4-350-1X	RA50835474
HAD2,0-100-1X	RA50835499
HAD2,0-250-1X	RA50835536
HAD2,0-350-2X	RA50835604
HAD2,8-70-1X	RA50835627
HAD2,8-250-2X	RA50835731
HAD2,8-350-1X	RA50835846
HAD3,5-250-2X	RA50835875
HAD3,5-350-1X	RA50835914

Notizen

Bosch Rexroth AG Industrial Hydraulics Zum Eisengießer 1 97816 Lohr am Main, Germany Telefon +49 (0) 93 52/40 30 20 my.support@boschrexroth.de www.boschrexroth.de © Alle Rechte Bosch Rexroth AG vorbehalten, auch bezüglich jeder Verfügung, Verwertung, Reproduktion, Bearbeitung, Weitergabe sowie für den Fall von Schutzrechtsanmeldungen.

Die angegebenen Daten dienen allein der Produktbeschreibung. Eine Aussage über eine bestimmte Beschaffenheit oder eine Eignung für einen bestimmten Einsatzzweck kann aus unseren Angaben nicht abgeleitet werden. Die Angaben entbinden den Verwender nicht von eigenen Beurteilungen und Prüfungen. Es ist zu beachten, dass unsere Produkte einem natürlichen Verschleiß- und Alterungsprozess unterliegen.